Powervamp Coolspool

Coolspool Power – For most aircraft operators, ground power is simply a necessary evil. It adds nothing to the status of aircraft in which billions of dollars are invested in order to reduce seat mile costs through fuel efficiency or increased capacity.

Yet, without reliable ground power, the impact on airlines can vary, from minor passenger inconvenience and flight deck issues to the catastrophic, such as the inability to start engines and subsequent flight cancellation. Add to this escalating inconvenience costs, all the way up to accommodation and associated expense.

In between these extremes lie a variety of issues, the impact of which can affect despatch reliability or add to fuel burn costs through an APU’s continuous operation during turnarounds. As for the flight deck crew, the ground handlers, the airports and the airline management, as long as ground power works, that’s all that matters. But with margins under pressure as never before, operators are being forced to maximise efficiencies in every area.

Coolspool 410

The Powervamp Coolspool 410 is relied upon daily with an ever increasing number of international regional airlines

This has never been truer than at this moment amongst the regional airlines. And this is precisely where Powervamp identified a need for a new approach to ground power for operators of DC commuter and regional aircraft.

Let’s start with a rhetorical question: “Would you rent or buy a 10 tonne truck, just to collect the groceries from the supermarket?” Of course you wouldn’t, yet in GPU terms, that is precisely what many operators are doing.

“…in a unique reversal of accepted design philosophy Powervamp utilises a very small Tier IV compliant Kubota diesel engine…”

Ground power has two functions: to power all the aircraft systems during turnarounds and maintenance and, briefly, to provide the power to spool up the turbines during the start cycle to a self- sustaining state. The difference between those two requirements, as measured in amps, can exceed 1,800 amps.

Powervamp Coolspool Hybrid 300

The Cooslpool Hybrid 300 in action with the Scottish regional airline, Loganair

For a typical regional aircraft such as the ATR, 160-190 amps are all that’s required during turnaround. Depending on the power plant and ambient temperature, up to 2,200 peak amps can be demanded at the point of starter/generator engagement for perhaps two seconds, reducing steadily to perhaps 600 amps over a 30 second period.

“…pilots have expressed astonishment at the delivery achieved by such a small, compact and quiet GPU…”

A GPU for a regional DC aircraft will therefore spend its life delivering typically 190 amps for 40-45 minutes during turnarounds, except for a brief two second period, during which time it has to provide 2,000 amps. This load will rapidly reduce to approximately 600 amps during a total start time of maybe half a minute.

In a unique reversal of accepted design philosophy Powervamp, with its latest Coolspool Hybrid 300 DC GPU, utilises a very small Tier IV compliant Kubota diesel engine of less than a litre instead of a diesel engine of more than four times the size and several times the cost./wp-content/uploads/2018/08/Coolspool-Hybrid-300-and-Coolspool-410.jpg

The best selling new generation Coolspool carts are transforming the regional airline’s approach to ground power

In fuel burn the Coolspool Hybrid 300 at full load consumes just 3.55 litres an hour, (0.93 US gallons), and with the power consumption of most regional or commuter aircraft, will burn only 2.4 litres an hour (0.63 US gallons an hour). Contrast these fuel burn figures with a typical large diesel GPU, where fuel burn can be between 25-35 litres per hour, (6.6- 9.4 US gallons per hour), and the savings in fuel alone are significant.

“…solving these issues was a priority for management at both Azul and Air Tahiti…”

The Kubota is perfectly matched to the integral power supplies, delivering up to 300 amps of continuous power. However, for the brief period of very high amps required during the 30-40 second start cycle, Powervamp’s Coolspool 300 Hybrid uses a combination of ultra high discharge batteries connected to its unique ‘power boost system‘, a feature which delivers the amperage and voltage for a sustained time that exceeds all known start cycles on free and shaft turbine engines.

Indeed, so smooth and powerful is the pure DC power delivery that pilots have expressed astonishment at the delivery achieved by such a small, compact and quiet GPU, noting that the voltage drop at the moment of starter engagement is far less than from a GPU quadruple the size.

/wp-content/uploads/2018/08/Coolspool-410-tahiti.jpg

Air Tahiti were impressed with the trial results and have since placed multiple orders for the Coolspool 410

Tailoring an airline’s ground power to these varying airports used to be a crude, “one size fits all” type of approach. With the high cost of a conventional GPU, “one size” typically meant no ground power at remote airports and large inefficient diesel GPUs at busy airports or at the main hub.

Adding to the situation was the cost of bore glazing and consequent high fuel and oil consumption caused by running for long periods under a light load.

“…trials duly terminated and for both airlines, the benefits have been tangible: each has placed multiple orders for the products…”

Solving these issues was a priority for management at both Azul and Air Tahiti. Powervamp offered to prove how it had the right product for each specific situation by providing a free trial unit.

In the case of Azul, Powervamp shipped one of its large DC Coolspool 410 28V DC battery carts to its ATR base in Belo Horizonte for extensive trials. For Air Tahiti, Powervamp identified two distinct requirements and sent a Coolspool 410 followed by the Coolspool 300 Hybrid.

/wp-content/uploads/2018/08/Coolspool-410-Azul.jpg

The Coolspool 410 went through a rigorous initial trial at Azul Airlines based in Belo Horizonte airport, Brazil

The trials duly terminated and for both airlines, the benefits have been tangible: each has placed multiple orders for the product, a testimony to the savings and performance of both types of GPU.

In capex justifications subsequently shared with Powervamp’s management, both airlines enumerated some key benefits. With the Coolspool 410 cart, no maintenance was required and a ten minute introduction fulfilled any training requirement. Investment was low and the unit suited to remote and infrequent operation.

Pollution was absent and noise levels lower, resulting in less fatigue for the handlers involved. Easily moved by hand, the unit was quickly adopted by handling teams. The Hybrid scored equally well, with praise for its battery function.

These new generation carts are changing ground power perceptions within the aviation industry, with more regional airlines benefiting from the numerous benefits offered by the Coolspool Hybrid 300 and Coolspool 410 GPUs.

To see the Coolspool Hybrid 300 and the Coolspool 410 in the field watch the full promotional video below.

 

For more information on how Powervamp can reduce costs within your regional airline, please contact info@powervamp.com or call our UK sales office on +44 (0)1934 643000.

 

BSI Accreditation
ECS Accreditation
B2B Compliance
RISQS Accreditation
RoHS Compliant Accreditation
NBAA Accreditation
WEEE Recycling Accreditation